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ABSTRACT

A priori estimates for solutions of the quasilinear hyperbolic-parabolic
equations governing the initial value problem describing the motion of
compressible, viscous and heat-conductive, Newtonian fluids are derived by
means of a new energy method. This technique enables us to simplify and unify
our previous results on the global existence in time and uniqueness of smooth
solutions of these equations for sufficiently smooth and "small" initial data

and to obtain their rate of decay.
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SIGNIFICANCE AND EXPLANATION

The motion of compressible, viscous and heat-conductive Newtonian fluids
is described by a system of partial differential equations which is of
hyperbolic-parabolic type and highly nonlinear. One of the first mathematical

problems associated with this system is the initial value problem. We obtain

the existence of a unique smooth global solution in time for the initial value
problem and alsc the decay rate of the solution as time tends to infinity.

Since the system is quasilinear with respect to the unknowns: density,

velocity and temperature, we need to assume that the initial data are close to

the constant equilibrium state. The purpose of this paper is to obtain a

priori estimates for the solutions of these equations by means of a new enerqgy
method. This technique, although still necessarily laborious, enables us to
simplify and unify our previous results, described briefly in the abstract and

cbtained jointly with T. Nishida (see, e.g. MRC TSR #1991).
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AN ENERGY METHOD FOR THE EQUATIONS OF MOTION
OF COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE FLUIDS

*
Akitaka Matsumura

§1. Introduction and Main Theorem.
In previous papers [1], [2], we have investigated the global solution in
time of the initial value problem for the following equations governing the

motion of isotropic Newtonian fluids;

i =
pt + (p\l )x. 0 ’
j
(1.1) wha el e = il s udy e el 6y, 1= 1,2,
X, p °x o x, X, X, X,
ﬁ j i j i 3
. op,. .
8, +u'0, =2 —;’-(nex)x Y,
\ 3 v 3 v 33
with the initial data
(1.2) (001, 0)(0,%) = (p,uys8.)(x)

2

where t > 0, x = (x1,x ,x3) (3 R3, p 1is the density, u = (u1,u ,u3) is the

2

velocity, 8 is the absolute temperature, p = p(p,08) is the pressure,
u= ulp,8) and p'(p,8) are viscous coefficients, «k = «k(p,08) 1is the

coefficient of heat conduction, ¢, = cv(p,e) is the heat capacity at
I R N2 T N2 e e

constant volume, and Y = (uxk + ux ) + u (ux ) is dissipation
b] 3
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function. We shall consider the solutions only in a neighbourhood of any

fixed constant state (p,u,8) = (;,0,3) where op,08 are any positive
constants. Moreover, we shall make the following natural assumptions on the

hyperbolic~parabolic system (1.1) throughout this paper;

(i) p, ¢ u, u' and « are smooth functions of O = {(p,u,8) : |p - ol,

VI
lul, 16 = 8 < v}

u, x > 0 and p' + 2 y>>0 in O,

(ii) pp, pe, c 3

vl
where Yq < min(s,a).
In [1], we succeeded in obtaining a global solution in time of (1.1),

(1.2) by using energy methods which were rather technical and complicated

under the assumptions that the fluid is an ideal and polytropic gas and that

(po - ;, u, 60 - 8) 1is suitably small in K ’

where Hk represents the usual Sobolev's spaces with the norm H-Hk. We also

proved the decay of the solution to the constant state (S, 0, 5), but we
were not able to estimate the decay rate of the solution. 1In [2], we obtained
both the global solution in time of the original probhlem (1.1), (1.2) and its
decay rate to the constant state by using a calculation of the decay rate for
the linearized equations, together with the energy estimates. Moreover, we
had to investigate the precise properties of the gpectrum of linearized

equations, and assume that

(po - S, g, 90 - 8) is suitably small in ut n Lo,




The purpose of this paper is to employ a different energy method to
handle the nonlinearity. The present approach is simpler and less technical
than the energy form used in (1], moreover we do not require all of the
precise properties of the linearized equations obtained laboriously in (2].
However, we note that because of the relative roughness of the new method, the
coefficients of the various estimates might be more rough than those in [1)
and {2]. By making use of this aporoach, we obtain both the existence of
global smooth solution in time as well as its decay rate to the constant state
for the general case (1.1), (1.2) under the assumption that

- B, u, 8 - 9) is suitably small in H3 '

4 n L‘). This method will be applied to an

(the previous approach required H
initial boundary value problem for (1.1), (1.2) in a subsequent paper.

The main result is:

Theoren 1.1. Congider the initial value problem {1.1), (1.2) and suppose

- - 3 X ces
the initial data (p0 = Pr Uy eo - 0) e H'+ Then there exist positive

constants € and Co such that if an LAY 80 - en3 < €4 the problem

(1.1), (1.2) has the unique global solution in time satisfying

p - ; € co(ol +o0; H3) n C1(01 +w; H ) '
(u, 8 - 8) € (0, +m; HO) nC'(O, +o; H)

ana

(1.3) sup |(o-s. u, 6§ - M < C0(1+t)
x

ﬂpn-g. uo, 60 - eu3 .
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§2. Proof of Thecrem
First rewrite the problem (1.1), (1.2) by the chanqges of variables:

p*p+top,u+u, 68+0+8, plptp, 8+8) » p(p,8), ulp+p, 8+6) - u(p,0)

so on resulting in

(2.1)

et o+ udy sl et
- b AN X X,
pt+o 3 i b]

. (8+8)p
o, +wo +——2u) = —T1— e 1 +w
3 (e*plcy, j (p+o)qv 373

(2.2) (pyu,8)(0,x) = (po, u 90)(x) .

0'
Define a positive constant Eqy by the Sobolev's lemma so that for
(F .
fl, <Ey wz ha\;: iup‘ﬂ < cren, < Yo+ Denote
k k 1 3
= A + =
nTF {3 £/ X, axz ax3 for all a, a + a, a, k} and define

el = n-uo. Then the solution of (1.1), (1.2) is sought in the set of

functions X(0, +»; E) for some E < E, where for 0 ¢ t, < t_ € +o,

0 1 2
0 3 1 2
X(t,, tyi E) = {(p,u,8) : peC (t1, t2: H) n¢C (t1, t2; H) ,
1
n, e L., tr HY), (1+0)20%0 e t2(e,, t; 1Y)
1Y 52 1° 52
3 2 2
{(1+£)D p € L (t1, t,i L I
n 3 1 1
{ N - - .
(u,d) e C (t1, tz, H™) n C (t1, tz, HY
2 3 Y, 2 2
Dlu,9) e L7(t, to; H), (1+¢)2p (u,98) ¢ Lz(t1, £y L),

3 2 1
(1+4t)D (u,3) ¢ L (t1, t?; HY

and  N(t,, t,) < E (E < En)}.

-4~
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We define N(t,: tz) by

) =  sup (u(p,u,e)(c)n§ +t ID(pyu,B) ()12 + 2 o

t1‘t<t2

2
N (t1' tz

t
« 10%(p,0,0) (018%) + [ wo()e) + 1D(u,8) (1) 12 +
t1 2 3

+ 1% (oo, 0 ()12 + 2ot + nD3(u,e)(T)hi)dT

We prove Theorem 1.1 by a combination of a local existence result and a priori

estimate for the solution in X,

Theorem 2.3. {local existence) Consider the initial value problem (2.1)

for t > ¢, with the initial data at t = t, as

(2.3) (pu,0)(t,) € .

Then there exist positive constants 51, C1(e1c1 < EO) and 1t which are

independent of t, such that if N(ty, t1) < €0 the problem (2.1)-(2.3) has

the unique solution

(p,u,8) € X(t1, £, + T C1N(t1,t1)) .

1

The proof of Theorem 2,1 is given in the same way as in [1].

Theorem 2.2, (a priori estimates) Suppose that the initial value

problem (2.1), (2.2) has a solution

(O:“,G) € X(O'T; E)

i




for some T > 0 and some E < Eo. Then there exist three positive constants

/.2 . ,
+
82 and 53 (52,23 < e1) and C2 (Cze3 1 C1 < EO) which are independent of

T such that if npo,u0,50H3 < 52 and E < ¢ then the solution satisfies

3l

the a priori estimate

(prule) € X(01T7 Cz“popuoleo “3) .

Proof of Theorem 2.2. Take

€3 81 €3
2'c.' ¢’ 2) :
1 T2 c /1]

€, = min(e '€

0 1

We may use the standard continuation arquments of a local solution on
[0,n1)], n =1,2,... to get the global solution. In fact, by the local

existence theorem, the definition of ¢ and the assumption

0
" . .
upﬂ,un,90A3 < en, we have a local solution
(prule) [ X(OrT:' C1llp0,u0,801|3) .
(o l{} ! C 4 ’ 1 3 3 _
Ry 1lon,uo 0l3 < 150 < 53 an Hpo uo,enﬂ3 < 82’ the a priori estimate
gives

(D:er) € X(O:T7 C2“p0,110190"3) .

Then hv czuon,uq,gou3 < CZEO < s, and the local existence theorem with

t1= 1, we have again C

(p,u,9) & X(1, 21; C1C2ﬂoo,u0,ﬁoﬂ3) .




Noting that
830,210 < 820, 1) + Ni(1,20)
we also have
(p,u,8) € X(0,27; c2/4:;§-Ipo,u0,eon3) .

fo. .2 fo. 2
Now by 02 1+c1 lpo,uo,aol3 < C0 1+C1 € < 53, the a priori estimate shows

that

(p,u,8) e X(0,27y CZNQO,uO,eoH3) .
Thus we can continue to use the same arguments on [nt, (n+1)t] and
{0, (n+1)1] successively n = 2,3,.,. . Finally the estimate (1.3) follows

from Nirenberg's inequality [3]

=

3

(2.4) suplp,u,8| < cnp.u,en4 |n:2(p,u,e)u4 .
X

§3. A Priori Esgtimates
We present here an energy method to obtain a priori estimates for small
solutions of equations with dissipatin. First we rewrite the system (2.1) so

that all the nonlinear terms appear at the right hand side of equations:;

-7~
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L pt + pux = f ’
3
i i ~ o~ 3 i
= - - +ut =
L"2u *po ¥ P,0, W (u+y )ux,x £,
i i i3
(3.1)
4 _ 3 ~ _ 4
L L = et + p3ux. xex x. = f '
12
where

W= u(0,0)/p, ¥ = u'(0,01/8, K = «(0,0)/p C (0,00

o ._ 3 _ .3
b - pux' u Dx. '
]
O - "o+ + - oFp))8 o+
£+ = u uxj (01 pp/(o p)pxi (p2 pe/(p p))9xi

i ) -
+ (uppx + ueex )(ux + ux.)/(o+o) +

j j 3 i
: S 0 =0y = ot

+ (upox + uéex_)ux‘/(p+p) + (u/ (ptp) “)ux_x, +
i i 3 J 3

F )/ (Bro) = G )

i3
and
a _ _ .7 _ (% 3 -
£* =z - u exj + (p3 (9+6)p6/(o+p)Cv)uxj + (Kopxj + Keexj)exj/(o+o)cv

+ (.</('5+p>cv - Z)exjxj + ¥W/oC,

pefine, for k, &, m = 0,1,2,3,

p N
A%(e) = i 1 pke0 ka + o5t o n%at b 220K L g ax
- p
. o] 3
F
Y, g (L) = [D"‘f° o o+ —2— o™t L " ax
xX -~ o~ x'
i i 2pu+y’ i

ey - —2 bt lei Ax

'
4




Then we have the following:

Lemma 3.1. There exist positive constants v and C which are independent

of t such that
(1, 0w e + v [T e, 0 (? ar
4 2 t k
< ClID (po,uo,eo)n + IO A" (1t)ldt), 0 < k <3 ,

. m 2 t  m 2
(ii) D p(t) 4" + v [ D (TN dT <

-1 -
m=1o 0 s ™ tae)i® ¢

m 2
+
< C(#D pon iD 0

-1

+ f; ™, 0 (012 + 1B (ol + 1™ nldn, 1 <me3

(ii1) t21i0% (.0, 00 (0217 + v [g & 0w, 0 (11 1ar

t _4-1

k
coff i o n? + 1A (lan, 1= 12, k=123

. g m 2 t L. m 2
(iv), - eTIDp(e)1” + v [, T D et I"aT <

’

-1 - -1 m-1
¢ cte*i™ Tuen? « f; A0 + ™ acoa®
‘ -1 -1
+ rluD”(u,e)(r)uz s 1™ oo+ 1™ ntar

— itiuinnetfiiestusitetoneibinniiuitmenen st sumssnson .




Lemma 3.2. There exist a positive congtant C which is independent of t

such that

2
(3.2) ¥2(0,8) < clipy,ug,8.0a + [¢ 1 cedhhaatinr + 1shen -
2=0

sctinn + e ad(oian .

Proof of Lemma 3.1. For (i)k and (iii)l we may estimate the equality

k'

P . A
k k
[t p“®) « p% + D h « DMt + ;3 o*) « p*o dxar

0
o) 3

k
= f:; TEA (T)dT ’

which implies after integrating by parts

p P t=t
1, k2 1, k 2 k. 2
tg'f"j-_le, +5|Dul +2—2-—|Deldx +
25 P3 t=0
t 2 o~ k1 2 ~ o~ kG2 “P2og k#1 2
+ [0 [ ulp™ ul® o+ (uru") D [ + — 17| 8| axdr
0 ‘ X, p
j 3
p p
t -1 0 1, k.2 1.k 2 k. 2
= f a0 [— Ippl” + 5 ID ul? + == 108) %ax +
‘0 2; 2 2p3

k
+ TQA (t)dtr ,

where 81'7 represents Kronecker's delta. These inequalities prove (i)k

and (i.ii)Q’k ecasily.

Next for (ii)m anAd (iv)Q m We may estimate the equality
,

-10-




t -1
=, ™ e,

which implies after integrating by parts

m ,2
2 , |pp| p
t” f 3 +

These equalites imply (ii)  and (iv)z’m.

Proof of Lemma 3.2. For any positve constant € > 0, consider the form

3

(1), + ¢ Y1)+ ez(iii)
. m 1
0 m=1

(3.3) + ea(iv)1 +

,2

I~ W

.1

4 5 6
+ + + i .
€ (111)2'2 € (iv)z’3 € (111)2'3
By taking € suitably small in (3.3), we can easily prove (3.2) by (3.3).

Next let us estimate the nonlinear terms.

-11-




Lemma 3.3. Suppose (p,u,0) € X(0,T7; E) for some E £ BO. Then, for any

positive constant ¢, there exists a positive constant C(g) which is

independent of t such that

2
53 arhaator + b+ acton + aeidioa
2=0

< € Nz(o,t) + Ec(e)Nz(o,t) .

Before proving Lemma 3.3, we note that Lemmas 3.2 and 3.3 easily imply
the desired a priori estimates. 1In fact, we may first choose ¢ so small and

next choose E so small that we have

2
N7(0,t) < Cnpo,uo,eoﬂ3 for E ¢ €,

Proof of Lemma 3.3. Because there are many terms to estimate, we pick up some

examples. The remaining terms will be estimated in the same way. First let

us pick up
t 0
(3.4) [o | £ 0 axdz

in f; Ao(r)dt. By using Nirenberg's inequality (2.4) efficiently we estimate

(3.4) as follows;

t 0 i
lfo [ € p dxdtl = lf [ -0 u - u]ppx AxAt)
b
s
= lfo f 5 Vs dxdrl|
b}
-12-




1 .t
<3 fo(suplpl)llpl yDundt
X
3 3
<c fg 1p1? 1bur 10%prdar
1 ! 3
2 2
< CE(suplplz)e(sup(1+T)NDuIZ) (sup(1+1)2nD plz)a
T T T
3
4

x ft (1+1) dr
0
2
< CEN(0,t) .
Next let us consider the quantity

(3.5) [; [ < 03(puj)x . %o axar

]

ce=-ring in f; r2A3(r)dr or ft

0 rzsz(r)dr » We estimate (3.5) as follows;

14

t 2 3 3j
(3.5) = f f T (p_ u” + pu’ ) * D dxdrt
0 xj xj xkxzxm xz kxm

3 X xszxm xkxzxm

-13-




3 2
e, =105 | TZuj(lgiﬂl—)xj dxdr|

. 3,2
f - tzuj JELJQL* dxdrt!
xj 2

[
—n
[~ o

ce [& < 12 o(x) 12ar < CENC(0,8)

n

2
r 3,2 9 2,2 2,2
| < fo [ e 2 ol® + 21' In“pl” ID"ul” axdr

1 .

L1t

|

1
([ Ip%ut®ax)?as

N
)

< e N(0,t) + f: < (fiDZQIde]

Iy

c 2 2,2 2
< e N0, ey v _ [T ip2pt% 1 ut? dr
g ‘0 1 1

C
< e N2(O,E) + = (sup(1+12)ﬁDzoui)(sup(1+tz)ﬂ02uﬁ§] x
1 T
r* 12(1*T2)-Zdr

x !
-1
< e N2(0,8) + Ce EEONz(O,t) ,
(1,1, l14$, 115{ and !IBI are estimated in the same way as |I1|,

(Ig‘ = ‘[E { 12 0 D3p . D3uij dxdri

t 4
< fo 2 suplpl 10°p1 WD ulaAT
X
1 3

ft

2 -1 2.2
< lq € 1 NDAuu2 + C ¢ rznpnanzpn D p“zdx

7

-1 t 2
¢ £ N°(0,8) + CEE € N2 (0, t) fq 2y Car

-14-~




< e N2(0,t) + Cle)EN2(0,t) .

Proceeding in this manner proves Lemma 3.3.

-15-
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